EDI Data Integration & Why It’s Important

EDI_data_integration

Today more than 85% of all electronic business transactions take place utilizing Electronic Data Interchange (EDI). This creates major competitive advantages for businesses and their partners. The EDI process has proven to be the most efficient and secure process to exchange business documents globally. EDI is a necessary component to ensure that your organization is achieving operational excellence.

What is EDI?

Electronic Data Interchange is the computer-to-computer exchange of business documents in a standard electronic format between business partners. By moving from a paper-based exchange of business document to one that is electronic, businesses enjoy major benefits such as reduced cost, increased processing speed, reduced errors and improved relationships with business partners.

EDI provides a safe, reliable, secure, and established method of exchanging documents for all industries. The retail industry uses EDI documents such as the Purchase Order and Invoice. The healthcare industry relies almost entirely on the HIPAA healthcare claim and corresponding payment EDI documents.

Why is EDI Necessary?

The adoption of electronic data interchange is critical for companies of all sizes to maintain their competitiveness in the marketplace. Over three decades of global usage has proven that EDI improves operational efficiency across your entire organization.

As an automation technology, EDI delivers core business benefits:

  • Saves time and money: automates a process previously manually executed with paper documents.
  • Improves efficiency and accuracy: data-entry errors are eliminated.
  • Improves traceability and reporting: electronic documents can be integrated with a range of IT systems to support data collection, visibility, and analysis.
  • Improves relationships with your customers: enables efficient transaction execution and prompt, reliable product and service delivery.

EDI is important to both large and small businesses. For large organizations, EDI enables standards to be instituted across trading partners to consistently achieve benefits. For smaller organizations, adherence to EDI offers greater integration with larger firms that have big budgets and strong influence.

Metalanguages like XML, JSON, and API integration complement, rather than replace EDI. Companies must be ready to handle an ever-increasing number of document formats and transmission options.

Why choose Etlworks for EDI Integration?

Etlworks allows your team to easily automate the handling, process, and integration of your electronic data exchange information. You’ll increase your organization’s communication, customer service, and cash flow by automating your processes.

With Etlworks, you can automate data flows that generate EDI messages from internal data or process incoming EDI messages and integrate them with your internal applications and databases, improving process control.

The EDI connector in Etlworks Integrator contains components that convert messages between EDI and XML and vice versa.

Etlworks supports numerous EDI formats — HL7, EDI X12, EDIFACT, FHIR, JSON, Flat File, CSV, Delimited, XML, AVRO and more.

EDI is only the tip of what we have the capability to handle. If you’d like to learn more about how we can streamline your EDI software integration, request a personalized demo from an Etlworks expert.

Etlworks Marketo Integration

etlworks-marketo-data-integration

What is Marketo?

Marketo is a cloud-lead management and marketing solution. The product range of Marketo is provided on a subscription basis and covers Lead Management, Sales Insights, Revenue Cycle Analytics and Social Marketing applications. It helps organizations automate and measure marketing engagement, tasks, and workflows, including those for email, mobile, social, and digital ads.

What is Etlworks?

Etlworks is a cloud-native integration platform helps businesses automate manual data management tasks, ensure data that are far more accurate, accelerate business workflows, and provide greater operational visibility to an organization.

After a few minutes setup, Etlworks replicates all your applications, databases, events and files into a high-performance data warehouse like Snowflake or Amazon Redshift, so that you can then use your favorite BI or analytics tools. Create reports, monitor custom dashboards, and more instantly from the cloud.

Connect Marketo to Anything

Etlworks offers connectivity to Marketo’s APIs enabling you to work with key Marketo entities including Lead, Activity, List, Opportunity, OpportunityRole as well as Custom Objects. Etlworks exposes both the SOAP and REST APIs for Marketo ensuring you can handle any integration task.

Use the Etlworks Marketo connector for data integration between Marketo and your CRM system, such as Salesforce, MS Dynamics, SugarCRM, HubSpot, and NetSuite; collaboration or survey tools; webinar platforms; data services; marketing databases; and more.

Etlworks Marketo connector free you to focus on insights, so your company will be faster and more efficient at optimizing your marketing performance and improving your campaigns’ ROI.

Etlworks partnered with CData to provide access to the Marketo API using industry standard JDBC protocol.

Let’s do it!

Connecting to Marketo

Step 1. Obtaining the OAuthClientId and OAuthClientSecret Values. To obtain the OAuthClientIdand OAuthClientSecret, navigate to the LaunchPoint option on the Admin area. Click the View Details link for the desired service. A window containing the authentication credentials is displayed.

Step 2. Obtaining the REST Endpoint URL. The RESTEndpoint can be found on your Marketo Admin area on the Integration -> Web Services option in the REST API section. Note the Identity Endpoint will not be needed.

Step 3. Enable Marketo connector for your Etlworks account. Contact support@etlworks.com to enable connector.

Step 4. Create a Marketo connection to work with data in Marketo.

Stored Procedures

Stored Procedures are available to complement the data available from the REST Data Model. Sometimes it is necessary to update data available from a view using a stored procedure because the data does not provide for direct, table-like, two-way updates. In these situations, the retrieval of the data is done using the appropriate view or table, while the update is done by calling a stored procedure. Stored procedures take a list of parameters and return back a dataset that contains the collection of tuples that constitute the response.

To call stored procure from the SQL flow or from Before/After SQL use EXEC sp_name params=value syntax. Example:

EXEC SelectEntries ObjectName = 'Account'

Extracting data from Marketo

Note: extracting data from Marketo is similar to extracting data from the relational database.

Step 1. Create a Marketo connection which will be used as a source (FROM).

Step 2. Create a destination connection, for example, a connection to the relational database, and if needed a format (format is not needed if the destination is a database or well-known API).

Step 3. Create a flow where the source is a database and the destination is a connection created in step 2, for example, relational database.

mceclip0

Step 4. Add new source-to-destination transformation.

Step 5. Select Marketo connection created in step 1 as a source connection and select the Marketo object you are extracting data from:mceclip0 (1)

Step 6. Select TO connection, format (if needed) and object (for example database table) to load data into.

mceclip3

Step 7. Click MAPPING and optionally enter Source Query (you don’t need a query if you are extracting data from the Marketo object unconditionally).

Step 8. Optionally define the per-field mapping.

salesforce-mapping (1)

Step 9. Add more transformations if needed.

Loading data in Marketo

Note: loading data in Marketo is similar to loading data into relational database.

Step 1. Create a source connection and a format (if needed).

Step 2. Create destination Marketo connection.

Step 3. Create a flow where the destination is a database.

Step 4. Add new source-to-destination transformation.

Step 5. Select FROM and TO connections and objects (also a FROM format if needed).

mceclip5

Step 6. Optionally define the per-field mapping.

Step 7. Add more transformations if needed.

Browsing data in Marketo

You must have a Marketo connection to browse objects and run SQL queries.

Use Explorer to browse data and metadata in Marketo as well as execute DML and SELECT queries against Marketo connection.

mceclip4

Ready to get started?

Contact Etlworks today to connect your Marketo instance with Etlworks and unlock the ability to read and replicate many of the objects to your data destination.

Salesforce Data Integration

etlworks-salesforce-data-integration

What is Salesforce?

Salesforce is the world’s #1 cloud-based customer relationship management (CRM) platform.

Salesforce offers a wide range of applications for managing business processes including sales, customer service, marketing, and e-commerce. For many organizations, Salesforce is a rich source of customer data, such as Accounts, Opportunities, Services, Community, Activities, and Leads.

On its own, Salesforce can dramatically improve how companies run their sales operations, support their customers, and provide products and services to a market. With the integration, businesses make Salesforce more valuable through data.

Through integration, you bring data from disparate sources, databases or applications, such as marketing, support, e-commerce, and sales to the data warehouse.

Effective and efficient integration of Salesforce with adjacent enterprise systems — such as databases, ERP and CRM systems, and custom applications — is critical to enabling sales teams, increasing revenue, and better serving customers. By integrating Salesforce with other applications, APIs and resources, you make Salesforce even more valuable to your employees and your organization.

Ready to get started?

Etlworks is a cloud-native data integration platform that helps businesses automate manual data management tasks, ensure data that are far more accurate, accelerate business workflows, and provide greater operational visibility to an organization.

Etlworks Salesforce connector allows fast real-time access to Salesforce data. The connector supports all objects and metadata (fields) available through the Salesforce API and works just like any other database connector. This not only makes it easier to read, insert, update and delete data, it also accelerates the time it takes to turn it into valuable, 360-degree customer insights. 

You can load Salesforce Contacts, Leads, Opportunities, Attachments, Accounts, custom objects, etc. directly to/from major cloud and on-premise data sources or synchronize data in both directions. Powerful mapping settings allow you to load and synchronize Salesforce data with sources having different data structures. You can schedule your integration operation to execute it automatically.

Let’s do it!

Extracting data from Salesforce

Note: extracting data from Salesforce is similar to extracting data from the relational database.

Step 1. Create Salesforce connection which will be used as a source (FROM).

Step 2. Create a destination connection, for example, a connection to the relational database, and if needed a format (format is not needed if the destination is a database or well-known API).

Step 3. Create a flow where the source is a database and the destination is a connection created in step 2, for example, relational database.

mceclip0.png

Step 4. Add new source-to-destination transformation.

Step 5. Select Salesforce connection created in step 1 as a source connection and select the Salesforce object you are extracting data from:

salesforce-from.png

Step 6. Select TO connection, format (if needed) and object (for example database table) to load data into.

salesforce-to

Step 7. Click MAPPING and optionally enter Source Query (you don’t need a query if you are extracting data from the Salesforce object unconditionally):

salesforce-query

Step 8. Optionally define the per-field mapping.

salesforce-mapping

Step 9. Add more transformations if needed.

Loading data in Salesforce

Note: loading data in Salesforce is similar to loading data into a relational database.

Step 1. Create a source connection and a format (if needed).

Step 2. Create destination Salesforce connection.

Step 3. Create a flow where the destination is a database.

Step 4. Add new source-to-destination transformation.

Step 5. Select FROM and TO connections and objects (also a FROM format if needed).

to-snowflake

Step 6. Optionally define the per-field mapping.

Step 7. Add more transformations if needed.

Browsing data in Salesforce

You must have a Salesforce connection to browse objects and run SQL queries.

Use Explorer to browse data and metadata in Salesforce as well as execute DML and SELECT queries against Salesforce connection.

browse-salesforce

Change Replication and Data Synchronization

Loading data from Salesforce to your data warehouse is just a part of the problem. Real-time analytics require data in the data warehouse to be constantly up-to-date with Salesforce. In Etlworks, you can always have the most current data from Salesforce in your data warehouse by using High Watermark (HWM) change replication techniques.

After the first replication of all the Salesforce data, subsequent replications update the data warehouse data incrementally with refreshes from Salesforce, in near real-time. Data warehouse data will always be up-to-date in a matter of minutes automatically without any user intervention.

Sign up free or get a demo today to learn more: https://etlworks.com

ETL/ELT all your data into Amazon Redshift DW

amazon_integration

Amazon Redshift is fast, scalable, and easy-to-use, making it a popular data warehouse solution. Redshift is straightforward to query with SQL, efficient for analytical queries and can be a simple add-on for any organization operating its tech stack on AWS.

Amazon Web Services have many benefits. Whether you choose it for the pay as you go pricing, high performance, and speed or its versatile and flexible services provided, we are here to present you the best data loading approaches that work for us.

Etlworks allows users to load your data from cloud storages and APIs, SQL and NoSQL databases, web services to Amazon Redshift data warehouse in a few simple steps. You can configure and schedule the flow using intuitive drag and drop interface and let Etlworks do the rest.

Etlworks supports not just one-time data loading operation. It can help you to integrate your data sources with Amazon Redshift and automate updating your Amazon Redshift with fresh data with no additional effort or involvement!

Today we are going to examine how to load data into Amazon Redshift.

A typical Redshift flow performs the following operations:

  • Extract data from the source.
  • Create CSV files.
  • Compress files using the gzip algorithm.
  • Copy files into Amazon S3 bucket.
  • Check to see if the destination Amazon Redshift table exists, and if it does not – creates the table using metadata from the source.
  • Execute the Amazon Redshift COPY command.
  • Clean up the remaining files.

There are some prerequisites have to be met, before you can design a flow that loads data into Amazon Redshift:

Now, you are ready to create a Redshift flow. Start by opening the Flows window, clicking the + button, and typing redshift into the search field:

redshift-flows

Continue by selecting the flow type, adding source-to-destination transformations and entering the transformation parameters:

redshift-transformation

You can select one of the following sources (FROM) for the Redshift flow:

  • API – use any appropriate string as the source (FROM) name
  • Web Service – use any appropriate string as the source (FROM) name
  • File – use the source file name or a wildcard filename as the source (FROM) name
  • Database – use the table name as the source (FROM) name
  • CDC – use the fully qualified table name as the source (FROM) name
  • Queue – use the queue topic name as the source (FROM) name

For most of the Redshift flows, the destination (TO) is going to be Amazon S3 connection. To configure the final destination, click the Connections tab and select the available Amazon Redshift connection.

redshift-connection

Amazon Redshift can load data from CSVJSON, and Avro formats but Etlwoks supports loading only from CSV so you will need to create a new CSV format and set it as a destination format. If you are loading large datasets into Amazon Redshift, consider configuring a format to split the document into smaller files. Amazon Redshift can load files in parallel, also transferring smaller files over the network can be faster.

If necessary, you can create a mapping  between the source and destination (Redshift) fields.

Mapping is not required, but please remember that if a source field name is not supported by Redshift, it will return an error and the data will not be loaded into the database. For example, if you are loading data from Google Analytics, the output (source) is going to include fields with the prefix ga: ( ga:user, ga:browser, etc. ). Unfortunately, Amazon Redshift does not support fields with a : , so the data will be rejected. If that happens, you can use mapping to rename the destination fields.

ELT for Amazon Redshift

Amazon Redshift provides affordable and nearly unlimited computing power which allows loading data to Amazon Redshift as-is, without pre-aggregation, and processing and transforming all the data quickly when executing analytics queries. Thus, the ETL (Extract-Transform-Load) approach transforms to ELT (Extract-Load-Transform). This may simplify data loading to Amazon Redshift greatly, as you don’t need to think about the necessary transformations.

Etlworks supports executing complex ELT scripts directly into Amazon Redshift which greatly improves performance and reliability of the data injection.

I hope this has been helpful. Go forth and load large amounts of data.

Data Replication Methods

database-replication

Data replication takes data from your source databases — Oracle, MySQL, Microsoft SQL Server, PostgreSQL, MongoDB, etc. — and copies it into your destination data warehouse. After you have identified the data you want to bring in, you need to determine the best way to replicate the data so it meets your business needs.

Choosing the right method

The method you choose impacts the end state of your data. Fortunately, there are data replication methods built to integrate with today’s data warehouses and suit a variety of use cases. At Etlworks, we believe in providing users with as much flexibility as possible. Let’s discuss each of the five methods of data replication and outline the option that may be best for you.

High Watermark (HWM)

The concept of Watermark refers to a flood after-match in which you look at the water stains in a wall to figure how high the water got, which is pretty much what we want to do: figure out which was the last item we updated and move from there on. Therefore, Watermark is a tool to simplify querying for updated objects, which is a very common use case when synchronizing data.

Pros:

  • fast
  • works for all data sources, including all databases, files, and APIs

Cons:

  • does not support deletes
  • requires a dedicated high watermark field in each table

Change Data Capture (CDC)

CDC is an approach to data integration that is based on the identification, capture, and delivery of the changes made to the source database and stored in the database ‘redo log’, also called ‘transaction log’. CDC or Log Replication is the fastest and most reliable way to replicate. It involves querying your database’s internal change log every few seconds, copying the changes into the data warehouse, and incorporating them frequently. CDC is the best method for databases that are being updated continually and fully supports deletes.

Pros:

  • fast
  • no polling from database tables – uses database redo log instead
  • supports deletes
  • enables near real-time replication

Cons:

  • currently supports only Postgres, MySQL, SQL Server, and Oracle
  • some older versions of the databases above do not support CDC
  • requires extra setup in the source database

Database Triggers

Trigger-based change replication can be implemented in many ways but the basic idea is that each table, which participates in a change replication as a source, has triggers for INSERT, UPDATE, and optionally DELETE. The triggers update the shadow table (or tables). The shadow tables may store the entire row to keep track of every single column change, or only the primary key is stored as well as the operation type (insert, update or delete).

Pros:

  • works for any source database which has triggers
  • no extra requirements for the specific version of the database or extra field in each table

Cons:

  • requires adding triggers to all database tables
  • triggers can negatively impact performance

Real-time CDC with Kafka

Apache Kafka is a popular technology to share data between systems and build applications that respond to data events. Etlworks completes Apache Kafka solutions by delivering high-performance real-time data integration.

Etlworks parses the CDC events emitted to the Kafka topic, automatically transforms events to the DML SQL statements (INSERT/UPDATE/DELETE), and executes SQL statements in the target database in the order they were created. It also handles the collisions and errors, ensuring that the solution is 100% reliable.

Pros:

  • fast
  • no polling from database tables
  • supports deletes
  • supports real-time replication

Cons:

  • complex setup (requires Kafka, Zookeeper, Kafka Connect, and Debezium)
  • supports only Postgres, MySQL, SQL Server, Oracle, and MongoDB
  • some older versions of the databases above do not support CDC
  • requires extra setup in the source database

Full refresh

Sometimes the simplest approach is the best. Full refresh replication method is best for small tables, static data, or one-time imports. Because it takes time to perform the full refresh, it’s a typically slower method than the others.

Pros:

  • the simplest to setup
  • can be quite fast for the relatively small datasets (<100K records)
  • works for all data sources

Cons:

  • not recommended for large datasets

Want to learn more about our replication options and what’s best for your data? Talk to us!

Cloud Data Integration

cloud-data-integration

In this blog post, I will discuss the definition of cloud data integration and what makes it truly useful.  

Before we start, let’s get on the same page and define what cloud data integration is.

According to Wikipedia, cloud data integration software must have the following features:

  • Deployed on a multi-tenant, elastic cloud infrastructure.
  • Subscription model pricing: operating expense, not capital expenditure.
  • No software development: required connectors should already be available.
  • Users do not perform deployment or manage the platform itself.
  • Presence of integration management & monitoring features.

While I agree with the definition, there’s something is missing:

where is the data we are suppose to be integrating?

If you are ahead of the curve, all your data is already stored in the cloud. While I think we all will be here eventually, as of today, a typical enterprise – from two guys working out of a garage to multinational corporations – owns and operates multiple data silos. I would add diverse and isolated data silos:

  • Cloud databases.
  • On-premise databases, available from the Internet.
  • On-premise databases, not available from the Internet.
  • Public APIs.
  • Private APIs, not available from the Internet.
  • Cloud-based third-party applications.
  • Locally hosted third-party applications.
  • Legacy applications.
  • Files stored locally.
  • Files stored in cloud data storage.
  • Office 365 and Google Docs documents.

Can your favorite data integration platform handle the vast array of data sources? If the answer is “Yes it can! We just need to deploy it in our corporate network and it will be able to connect to all our data,” then it is not a cloud data integration anymore. Don’t get me wrong, there is nothing wrong with the ETL tool deployed locally. It gets the job done, but you are not getting the benefits of the true cloud-based platform, specifically this one:

users do not perform deployment or manage the platform itself.

If this is not a showstopper, my advice is to find and stick to the tool which has all the required connectors and is easy to program and operate. Sure, you will need a competent DevOps group on payroll (in addition to the ETL developers), who will be managing and monitoring the tool, installing upgrades, performing maintenance, etc., but hey…it works.

Keep reading if you want to focus on breaking the data silos in your organization instead of managing the data integration platform. The solution to the problem at hand is so-called hybrid data integration.

Hybrid data integration is a solution when some of the connectors can run on-premise, behind the corporate firewall, while others, and the platform itself runs on the cloud.

We, at Etlworks, believe that no data silo should be left behind, so in addition to our best in class cloud data integration service we offer fully autonomous, zero-maintenance data integration agents which can be installed on-premise, behind the corporate firewall.  Data integration agents are essentially connectors installed locally and seamlessly integrated with a cloud-based Etlworks service.

Let’s consider these typical data integration scenarios:

Source and destination are in the cloud

Example: the source is an SQL Server database in Amazon RDS and the destination is a Snowflake data warehouse.

In this case, no extra software is required. Etlworks can connect to the majority of the cloud-based databases and APIs directly. Check out available connectors.

The source is on-premise, behind the firewall and the destination is in the cloud

Example: the source is locally hosted PostgreSQL database, not available from the Internet, and the destination is Amazon Redshift.

In this scenario, you will need to install a data integration agent as a Windows or Linux service in any available computer in your corporate network (you can install multiple agents in multiple networks if needed). The agent includes a built-in scheduler so it can run periodical extracts from your on-premise database and push changes either directly to the cloud data warehouse or to the cloud-based data storage ( Amazon S3, for example).  You can then configure a flow in Etlworks, which will be pulling data from the cloud data storage and loading into the cloud-based data warehouse.  The flow can use the extremely fast direct data upload into the Redshift available as a task in Etlworks.

The source is in the cloud and the destination is on-premise, behind the firewall

Example: the source is a proprietary API, available from the Internet and the destination is a database in the Azure cloud.

Data Integration Agent can work both ways: extracting data from the sources behind the firewall and loading data into the local databases. In this scenario, the flow in Etlworks will be extracting data from the cloud-based API, then transforming and storing it in the cloud-based storage, available to the agent. The data integration agent will be loading data from the cloud-based storage directly into the local database.

The source is in the cloud and a destination is a third-party software hosted locally

Example: the source is a proprietary API, available from the Internet and the destination is locally hosted data analytics software.

If the third-party software can load data from services such as Google Sheets, you can configure a flow in Etlworks, which will be extracting and transforming data from the API and loading into the Google Sheets. The third-party software will then be loading data directly from the specific worksheet. You can always find a format which is understood by Etlworks and a third-party software.

Source and destination are on-premise, behind the firewall

Example: the source is a proprietary API, not available from the Internet and the destination is another proprietary API, again not available from the Internet.

In this case, you probably don’t need cloud-based software at all. Look at Etlworks on-premise subscription options as well as an option to buy a perpetual license.