Etlworks Marketo Integration

etlworks-marketo-data-integration

What is Marketo?

Marketo is a cloud-lead management and marketing solution. The product range of Marketo is provided on a subscription basis and covers Lead Management, Sales Insights, Revenue Cycle Analytics and Social Marketing applications. It helps organizations automate and measure marketing engagement, tasks, and workflows, including those for email, mobile, social, and digital ads.

What is Etlworks?

Etlworks is a cloud-native integration platform helps businesses automate manual data management tasks, ensure data that are far more accurate, accelerate business workflows, and provide greater operational visibility to an organization.

After a few minutes setup, Etlworks replicates all your applications, databases, events and files into a high-performance data warehouse like Snowflake or Amazon Redshift, so that you can then use your favorite BI or analytics tools. Create reports, monitor custom dashboards, and more instantly from the cloud.

Connect Marketo to Anything

Etlworks offers connectivity to Marketo’s APIs enabling you to work with key Marketo entities including Lead, Activity, List, Opportunity, OpportunityRole as well as Custom Objects. Etlworks exposes both the SOAP and REST APIs for Marketo ensuring you can handle any integration task.

Use the Etlworks Marketo connector for data integration between Marketo and your CRM system, such as Salesforce, MS Dynamics, SugarCRM, HubSpot, and NetSuite; collaboration or survey tools; webinar platforms; data services; marketing databases; and more.

Etlworks Marketo connector free you to focus on insights, so your company will be faster and more efficient at optimizing your marketing performance and improving your campaigns’ ROI.

Etlworks partnered with CData to provide access to the Marketo API using industry standard JDBC protocol.

Let’s do it!

Connecting to Marketo

Step 1. Obtaining the OAuthClientId and OAuthClientSecret Values. To obtain the OAuthClientIdand OAuthClientSecret, navigate to the LaunchPoint option on the Admin area. Click the View Details link for the desired service. A window containing the authentication credentials is displayed.

Step 2. Obtaining the REST Endpoint URL. The RESTEndpoint can be found on your Marketo Admin area on the Integration -> Web Services option in the REST API section. Note the Identity Endpoint will not be needed.

Step 3. Enable Marketo connector for your Etlworks account. Contact support@etlworks.com to enable connector.

Step 4. Create a Marketo connection to work with data in Marketo.

Stored Procedures

Stored Procedures are available to complement the data available from the REST Data Model. Sometimes it is necessary to update data available from a view using a stored procedure because the data does not provide for direct, table-like, two-way updates. In these situations, the retrieval of the data is done using the appropriate view or table, while the update is done by calling a stored procedure. Stored procedures take a list of parameters and return back a dataset that contains the collection of tuples that constitute the response.

To call stored procure from the SQL flow or from Before/After SQL use EXEC sp_name params=value syntax. Example:

EXEC SelectEntries ObjectName = 'Account'

Extracting data from Marketo

Note: extracting data from Marketo is similar to extracting data from the relational database.

Step 1. Create a Marketo connection which will be used as a source (FROM).

Step 2. Create a destination connection, for example, a connection to the relational database, and if needed a format (format is not needed if the destination is a database or well-known API).

Step 3. Create a flow where the source is a database and the destination is a connection created in step 2, for example, relational database.

mceclip0

Step 4. Add new source-to-destination transformation.

Step 5. Select Marketo connection created in step 1 as a source connection and select the Marketo object you are extracting data from:mceclip0 (1)

Step 6. Select TO connection, format (if needed) and object (for example database table) to load data into.

mceclip3

Step 7. Click MAPPING and optionally enter Source Query (you don’t need a query if you are extracting data from the Marketo object unconditionally).

Step 8. Optionally define the per-field mapping.

salesforce-mapping (1)

Step 9. Add more transformations if needed.

Loading data in Marketo

Note: loading data in Marketo is similar to loading data into relational database.

Step 1. Create a source connection and a format (if needed).

Step 2. Create destination Marketo connection.

Step 3. Create a flow where the destination is a database.

Step 4. Add new source-to-destination transformation.

Step 5. Select FROM and TO connections and objects (also a FROM format if needed).

mceclip5

Step 6. Optionally define the per-field mapping.

Step 7. Add more transformations if needed.

Browsing data in Marketo

You must have a Marketo connection to browse objects and run SQL queries.

Use Explorer to browse data and metadata in Marketo as well as execute DML and SELECT queries against Marketo connection.

mceclip4

Ready to get started?

Contact Etlworks today to connect your Marketo instance with Etlworks and unlock the ability to read and replicate many of the objects to your data destination.

ETL/ELT all your data into Amazon Redshift DW

amazon_integration

Amazon Redshift is fast, scalable, and easy-to-use, making it a popular data warehouse solution. Redshift is straightforward to query with SQL, efficient for analytical queries and can be a simple add-on for any organization operating its tech stack on AWS.

Amazon Web Services have many benefits. Whether you choose it for the pay as you go pricing, high performance, and speed or its versatile and flexible services provided, we are here to present you the best data loading approaches that work for us.

Etlworks allows users to load your data from cloud storages and APIs, SQL and NoSQL databases, web services to Amazon Redshift data warehouse in a few simple steps. You can configure and schedule the flow using intuitive drag and drop interface and let Etlworks do the rest.

Etlworks supports not just one-time data loading operation. It can help you to integrate your data sources with Amazon Redshift and automate updating your Amazon Redshift with fresh data with no additional effort or involvement!

Today we are going to examine how to load data into Amazon Redshift.

A typical Redshift flow performs the following operations:

  • Extract data from the source.
  • Create CSV files.
  • Compress files using the gzip algorithm.
  • Copy files into Amazon S3 bucket.
  • Check to see if the destination Amazon Redshift table exists, and if it does not – creates the table using metadata from the source.
  • Execute the Amazon Redshift COPY command.
  • Clean up the remaining files.

There are some prerequisites have to be met, before you can design a flow that loads data into Amazon Redshift:

Now, you are ready to create a Redshift flow. Start by opening the Flows window, clicking the + button, and typing redshift into the search field:

redshift-flows

Continue by selecting the flow type, adding source-to-destination transformations and entering the transformation parameters:

redshift-transformation

You can select one of the following sources (FROM) for the Redshift flow:

  • API – use any appropriate string as the source (FROM) name
  • Web Service – use any appropriate string as the source (FROM) name
  • File – use the source file name or a wildcard filename as the source (FROM) name
  • Database – use the table name as the source (FROM) name
  • CDC – use the fully qualified table name as the source (FROM) name
  • Queue – use the queue topic name as the source (FROM) name

For most of the Redshift flows, the destination (TO) is going to be Amazon S3 connection. To configure the final destination, click the Connections tab and select the available Amazon Redshift connection.

redshift-connection

Amazon Redshift can load data from CSVJSON, and Avro formats but Etlwoks supports loading only from CSV so you will need to create a new CSV format and set it as a destination format. If you are loading large datasets into Amazon Redshift, consider configuring a format to split the document into smaller files. Amazon Redshift can load files in parallel, also transferring smaller files over the network can be faster.

If necessary, you can create a mapping  between the source and destination (Redshift) fields.

Mapping is not required, but please remember that if a source field name is not supported by Redshift, it will return an error and the data will not be loaded into the database. For example, if you are loading data from Google Analytics, the output (source) is going to include fields with the prefix ga: ( ga:user, ga:browser, etc. ). Unfortunately, Amazon Redshift does not support fields with a : , so the data will be rejected. If that happens, you can use mapping to rename the destination fields.

ELT for Amazon Redshift

Amazon Redshift provides affordable and nearly unlimited computing power which allows loading data to Amazon Redshift as-is, without pre-aggregation, and processing and transforming all the data quickly when executing analytics queries. Thus, the ETL (Extract-Transform-Load) approach transforms to ELT (Extract-Load-Transform). This may simplify data loading to Amazon Redshift greatly, as you don’t need to think about the necessary transformations.

Etlworks supports executing complex ELT scripts directly into Amazon Redshift which greatly improves performance and reliability of the data injection.

I hope this has been helpful. Go forth and load large amounts of data.

%d bloggers like this: